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Highlights  

1. This clinical practice guideline seeks to recommend the current standards to be used during 

long-term video-EEG monitoring.  

2. There existing high-level evidence for the utility and performance of long-term video-EEG 

monitoring is limited. 

3. Comprehensive recommendations addressing minimum standards for performing long-term 

video-EEG monitoring are needed.  

4. Clinicians, hospital administrators, and insurance company representatives will benefit from 

understanding standards for video-EEG monitoring as it applies to patient management.  
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Summary  

The objective of this clinical practice guideline is to provide recommendations on the 

indications and minimum standards for long-term video-EEG monitoring (LTVEM). The Working 

Group of the International League Against Epilepsy and the International Federation of Clinical 

Neurophysiology have developed the guidelines aligned with the Epilepsy Guidelines Working 

Group. We reviewed the published evidence using the Preferred Reporting Items for Systematic 

Review and Meta-Analysis (PRISMA) statement. We found limited high levels of evidence aimed 

at specific aspects of LTVEM performed to diagnose patients with seizures and nonepileptic 

events.  For classification of evidence, we used the Clinical Practice Guideline Process Manual of 

the American Academy of Neurology. In the absence of high-level evidence, we used the 

modified Delphi method. We used GRADE to formulate the recommendations for the clinical 

indications for LTVEM in the evaluation of patients with suspected epilepsy. Further research is 

needed to establish long-term outcomes from LTVEM, that will enhance evidence for direct 

clinical utility. 
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1. Introduction 

With more than 70 million cases of epilepsy are reported world-wide, objective measures are 

needed to evaluate people for seizures.1-4 Seizures impart safety risk,5 affect people of all ages, gender, 

ethnic background, and cultures,2, 4 with one-third of people who are uncontrolled by antiseizure 

medication (ASM).6, 7 Practice guidelines and quality measures are available providing national and 

international standards for diagnosis and treatment of patients.8-10 Because the manifestations of 

epilepsy are intermittent, a standard EEG often fails to reveal the epileptiform activity necessary to 

support the diagnosis of epilepsy. Long-term video-EEG monitoring (LTVEM) is therefore the most 

robust reference standard for recording epileptiform activity and seizures.11 In this clinical practice 

guideline, LTVEM refers to scalp EEG monitoring using the 10-20 system of electrode placement and a 

single channel of electrocardiogram (ECG). Video-EEG remains the best technique to evaluate people 

with recurrent paroxysmal events with and without impaired consciousness when routine evaluation is 

unrevealing5, 12-20 Position papers and standards16, services21 and guidelines11, 14, 22-25 exist for specific 

indications and certain aspects of LTVEM, though an international guideline to identify minimum 

performance standards is needed. The International League Against Epilepsy (ILAE) and the International 

Federation of Clinical Neurophysiology (IFCN) are developing clinical practice guidelines for application 

of neurophysiological methods in people with epilepsy. The target audience for this clinical practice 

guideline are clinicians and allied healthcare personnel. The objective of this guideline is to provide 

recommendations on standards performance of LTVEM.  

2. Study Methods 

We extracted, reviewed and evaluated published evidence on standards of practice in LTVEM 

and used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement 

for a breakdown of article selection (Figure 1).26 Data sources included PubMed and EMBASE 

supplemented with articles from Ovid Medline, CINAHL (Cumulative Index of Nursing and Allied Health 

Literature), and Cochrane databases including conference proceedings. The search was restricted to 

human subjects, but no language restriction was applied during article inclusion. The search strategy 

included broad search terms (“epilepsy AND seizures AND video-EEG) and synonyms (“epilepsy AND 

Seizures AND telemetry) pertaining to LTVEM and subtopics evaluated (i.e., “epilepsy AND 

standards/guidelines”). Article search took place before Oct 16, 2019 and additional relevant articles 

were selected thereafter for inclusion when high-level evidence was identified. Neonates and 

continuous EEG monitoring during critical illness were excluded. Two independent reviewers screened 

titles and abstracts and full text articles were examined for eligibility. 

Due to the large heterogeneity in study design and the use of different LTVEM outcomes 

quantitative synthesis (meta-analysis) was not possible.  Therefore, we conducted a qualitative synthesis 

of high-level studies that are listed in Table 1. We posed questions to address patient populations, 

interventions, comparators, and measured outcome (PICO) aimed at answering the following questions 
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(Table 2): (1) What are the indications for LTVEM that influence outcome? (2) What are the technical 

requirements for LTVEM? (3) What are the essential practice elements for performing LTVEM? 

Individual studies were rated using predefined criteria to evaluate the evidence reflecting risk of 

bias given the paucity of high-level evidence.11, 27, 28 Category I studies were composed of prospective 

trials, with either a control group or with two patient groups from a broad spectrum cohort one with 

and other without the disease. Broad spectrum studies described important confounders in their 

baseline population. Category II were narrow-spectrum prospective trials or large broad-spectrum 

retrospective trials. Category III were narrow-spectrum retrospective trials or case-control studies. 

Category IV was all other studies including small retrospective studies. The most relevant articles were 

identified, rated, and linked to recommendations predicated on category I and II rated studies. Pre-

existing guidelines, consensus/position statements, and task force proposals were incorporated when 

applicable. Studies had to specify key outcome metrics (diagnosis and management) according to the 

STARD (Standards for Reporting Diagnostic Accuracy Studies) criteria.29, 30 High-level evidence was 

classified, rated, and subjected to a second rating. We used the Grading of Recommendations 

Assessment, Development and Evaluation (GRADE) system to formulate recommendations. 

We developed this clinical practice guideline as evidence-based and consensus-driven modeled 

after the Epilepsy Guidelines Working Group.31 The ILAE Commission on Diagnostic Methods and the 

Executive Committee of the IFCN each appointed members of the Working Group. The Working Group 

and the guideline development protocol was approved by the Guidelines Task Force before starting the 

literature search. Two face-to-face meetings were held. Where relevant high-level evidence was absent, 

we used the Delphi process32 to obtain blind consensus when majority agreed.23   

3. Indications   

Epilepsy and neurology communities have produced 11 references to LTVEM in the form of 

guidelines and position papers, though limited comprehensive assessment outside individual topics 

exists16. Principal clinical indications for LTVEM include: (1) differential diagnosis between epileptic 

seizures and nonepileptic attacks (2) classification and (3) quantification of seizure types and epilepsy 

syndromes, and (4) electroclinical characterization of focal seizures during presurgical evaluation in 

patients with drug-resistant epilepsy14, 16, 22, 33. 

3.1 Differential Diagnosis 

LTVEM is most used for differential diagnosis of epileptic and non-epileptic attacks with 

compelling evidence from 143 LTVEM papers (no category I, 6 category II) for clinical usefulness to 

distinguish between them.17, 34-38 One category II study viewing samples of video and EEG to categorize 

diagnoses demonstrate good inter-rater reliability for epilepsy, but only moderate reliability for 

psychogenic nonepileptic attacks (PNEA), and only fair inter-rater reliability for physiologic nonepileptic 

events.39, 40 Overall, some reports reveal PNEA in approximately 20-30% of patients admitted for 

diagnostic LTVEM35, 37 but others note a wider prevalence between 5% and 50%.41, 42 Misinterpretation 

of an EEG has been one reason leading to misdiagnosis.41-46 A meta-analysis of 135 VEM studies found 

60% of referrals were for diagnostic reasons.47 Another reason for misdiagnosis are due to spells 
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demonstrating generalized motor activity.48 These may be challenging to distinguish from epileptic 

seizures based on clinical grounds alone.49 In 181 consecutive patient LTVEM recordings, the clinical 

diagnostic question was answered in 67%.50 In older adults (mean age 51 years), LTVEM was useful in 

93.5% of 31 patients with pure PNEA.34 Standards for diagnosis of PNEA include use of LTVEM developed 

by an international consensus group of clinician-researchers.51 A diagnostic LTVEM outcome study in 230 

people resulted in a change in diagnosis in 133 (58%) and refinement of a diagnosis in 29 (13%) to 

provide overall diagnostic value in 87% of patients. It was particularly useful to differentiate epileptic 

seizures from non-epileptic attacks as well as frontal lobe seizures from generalized seizures.36 Similarly, 

another study found 58% of 131 patients had their diagnosis altered by LTVEM, with the greatest change 

being an increase from 7 to 31% of patients with nonepileptic attacks.17 Following LTVEM the diagnosis 

was reversed in 29 (24%) out of 121 patients and 4 diagnoses changed from nonepileptic to epileptic 

seizures.37 Overall, LTVEM identified patients with pure PNEA to be more common than patients with a 

dual diagnosis38, 52 and physiological non-epileptic events.19 One category II controlled study of 1083 

patients from Poland evaluating PNEA in 85 (7.8%) on clinical grounds: 48 patients were believed to 

manifest only PNEA and 37 patients were suspected of both PNEA and epileptic seizures.38 When LTVEM 

was performed only 9/230 (3.9%) patients had a dual diagnoses demonstrating the pitfall for a dual 

diagnosis based on clinical grounds alone. Another retrospective comparative cohort of 49 patients with 

PNEA noted 18.2% manifested pseudostatus.53   

A systematic review involving 33 papers on diagnostic procedures including seizure induction, 

Minnesota multiphasic personality inventory, prolactin levels, single photon emission computed 

tomography (SPECT), and clinical metrics (i.e., pre-ictal pseudosleep, ictal, and post-ictal characteristics) 

found no procedure attained reliability equivalent to VEM.54 Overall, specificity was better than 

sensitivity ranging from 56-100% compared with 23-96% with none of the tests investigated 

demonstrating both high sensitivity and specificity. In one pediatric retrospective diagnostic accuracy 

study, chart review found superior sensitivity of 54% and comparable specificity of 88% for LTVEM 

compared to standard EEG even in the absence of a typical seizure or spell.55 LTVEM sessions were 

significantly shorter in a group of 221 patients undergoing LTVEM for diagnosis (mean: 2.4 days) than for 

those admitted for presurgical evaluation (3.5 days).37 In a series of 148 consecutive patients evaluated 

with LTVEM over approximately 3 years there was a significant reduction in ASM usage in people with 

epilepsy and PNEA after the procedure.34 By providing a definitive diagnosis, potential adverse 

consequences of unnecessary ASM and invasive procedures may be averted by LTVEM56.  

The highest-level studies in this area included 6 level II studies which are downgraded due to 

unexplainable inconsistencies between these studies but upgraded due to the magnitude of effects. The 

overall confidence in evidence for these studies is therefore moderate for LTVEM to provide differential 

diagnostic utility in differentiating epileptic from non-epileptic events.  

Recommendation: LTVEM monitoring should be used to differentiate between epileptic and non-

epileptic events, in patients where the diagnosis is in question (strong recommendation). 

3.2 Classification  
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 Classification of seizures and epilepsy syndromes is essential for appropriate selection of ASM.43, 

57, 58 The International Classification of Epileptic Seizures divides seizure types into focal and 

generalized.59 LTVEM-proven epilepsies support a continuum of disease11, 58, 60-62 providing definite 

diagnosis beyond history, clinical seizure types, neurophysiologic, and neuroimaging features.13, 19, 24, 59, 

63, 64 A prospective study of inpatient LTVEM (at least 3 hours) clarified the epilepsy syndrome in 93% of 

patients, one-third of whom were eligible for epilepsy surgery.65  

Alternative classification systems based purely on semiology have been proposed66. A 

prospective comparison (category II) between ILAE and semiological seizure classification systems in 78 

consecutive patients found seizure classification changed significantly from baseline following LTVEM 

using the ILAE more than the semiological classification.40 Another adult semiology study (category IV) of 

90 patients found some seizure types (e.g., myoclonic and hypermotor seizures) had excellent 

consistency between historical description and a LTVEM confirmed diagnosis while other types (focal 

seizures) were less reliable.67 In a study (category IV) of 323 children (mean age of 7 years), episodes of 

staring, myoclonic jerking, abnormal eye movements, and posturing, 53% were correctly reclassified by 

new information derived from LTVEM.68 Other retrospective (category IV) studies involving patients with 

juvenile myoclonic epilepsy reported focal clinical and generalized EEG features in about one-half of 

patients blurring the clinical diagnosis.69, 70 

Most studies on the role of LTVEM to classify seizures are category III and IV. They proved useful 

in distinguishing between focal and generalized epilepsy in 47/230 (35%) in one study.36 A large 

retrospective LTVEM-based surgical series classifying patients by EEG found a focal EEG in two-thirds, 

generalized abnormality in 22%, lateralized features in 4%, and 6% that were mislocalized or 

mislateralized.71 Sleep-related seizures may be diagnosed and correctly classified (focal vs generalized) 

by overnight LTVEM.72, 73 A small retrospective study found a significant increase in the percentage of 

generalized epilepsy diagnoses (more than double) after LTVEM.17 Genetic Generalized Epilepsies (GGE) 

have not found gene defects to be a reliable classification method,74 and IEDs are neither seizure type 

nor epilepsy syndrome specific.75, 76 LTVEM is able to classify and subclassify GGE,77 and reclassify seizure 

types to select appropriate ASM.43  

There was a single class II study and the overall confidence in evidence is low to utilize LTVEM 

for purposes of classifying patients with epilepsy.  

Recommendation: LTVEM may help classify patients with epilepsy in whom the seizure type or 

epilepsy syndrome is undetermined (weak recommendation). 

3.3 Seizure Quantification   

Thirty articles (category III and IV) addressed seizure quantification and LTVEM. LTVEM studies 

demonstrate fewer than 50% of seizures (47-63%), on average, are correctly represented by patients 

with accuracy of reporting varying over time.78 One (category IV) questionnaire study of patient’s 

subjective self-awareness of a seizure found 44.2% of LTVEM-proven seizures went unnoticed.79 Still, 

self-reporting is the foundation for clinical decision-making of seizure patients including regulatory trials 

leading to approval of ASM.80 Long-term ambulatory EEG and LTVEM studies reveal 20-25% of patients 

are always unaware of seizures.81-85 At risk groups include patients with temporal lobe epilepsy (TLE) and 

focal impaired awareness (non-motor) seizures79, 82, 84, fluctuating cognitive decline86-89 and transient 

epileptic amnesia.90, 91 In a (category III) LTVEM study evaluating 327 consecutive TLE patients, 
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subclinical seizures were detected in 8.3%, and 1% had only subclinical seizures recorded (all of which 

were detected within first 24 hours).92 Using post-ictal surveys during LTVEM, patients with convulsions 

associated with GGE were more self-aware of them than those with focal to bilateral tonic-clonic 

seizures.81 

Patients with generalized epilepsies, severe epilepsy, and those with frequent seizures are good 

candidates for seizure quantification by LTVEM. Convulsions are readily identifiable,93 however, absence 

seizures and bursts of generalized epileptiform activity may be subtle and subclinical unless response 

testing is performed.  Also failure to recognize nocturnal seizures may occur in up to 86% of patients.94 

LTVEM can quantify seizure frequency and identify clinical phenomenology that could potentially allow 

medication changes to yield a more favorable response to treatment95 and lead to improved patient 

outcomes.84  

Multiple lower-class studies were inconsistent and the confidence in evidence for utility of 

video-EEG monitoring to quantify seizures is low. All studies demonstrate patients under or 

overestimate their seizure frequency. Expert opinion for quantification using LTVEM is generally 

accepted when objective information is required for management. 

Recommendation: The usefulness of LTVEM to quantify seizures in patients with epilepsy is weak. 

3.4 Seizure Characterization for Surgical Management   

Three prospective longitudinal cohort studies of patients with newly diagnosed epilepsy treated 

with ASM fail to show a decline in the drug-resistant epilepsies over 2 decades.96 Despite new 

advances,97 risks for morbidity and mortality exist for patients when seizures are uncontrolled.98-101 Two 

category 1 randomized controlled clinical trials in adults, and one trial in children demonstrate 

effectiveness of epilepsy surgery against best medical practice following LTVEM.98-100 Position 

statements recommend epilepsy surgery be considered when patients are resistant to ASM.101 Epilepsy 

surgery is under-utilized,102, 103 with more than 10 million people worldwide who are potential surgical 

candidates.104, 105 

Multiple category III and IV studies stratify surgical candidacy based upon LTVEM results.47, 106 

Scalp-based VEM and invasive EEG (iEEG) during LTVEM are standard neurophysiological techniques to 

characterize the seizure onset zone for surgery.11, 47 Few studies characterize seizure-onset denoted by 

EEG patterns relative to outcome.107, 108 A category III study involving 3057 seizures in 75 consecutive 

focal epilepsy patients after successful epilepsy surgery compared matched scalp and iEEG seizures from 

separate LTVEM sessions.106 A multivariate analysis revealed, a localized scalp EEG at seizure onset 

(independent of location) predicted a favorable outcome after surgery, 106 while multilobar and 

widespread seizure onset predicted unfavorable surgical outcomes.106, 109 Other retrospective category 

III studies involving combined scalp and iEEG during VEM demonstrate moderate to favorable sensitivity 

and specificity for patterns predicting localization in patients with TLE.110, 111 In a prior report analyzing 

61 patient with lesional focal epilepsies, 71 pairs of seizure-onset patterns matched between scalp and 

iEEG found some scalp seizure-onset patterns that were highly associated with a specific intracerebral 

pattern of the depth localized seizure-onset zone.105  Single-center (category IV) studies suggest some 

focal extratemporal scalp patterns predict a seizure-free outcome.112 In contrast, other reports found 
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dissimilar generators were capable of producing similar scalp-based ictal patterns.113, 114  A consortium 

funded by the European Union performed a systematic review and meta-analysis.115 Pooled estimates 

were calculated for sensitivity and specificity with respect to postsurgical seizure freedom. They found 

LTVEM had substantial heterogeneity across studies and were associated with moderate sensitivity and 

low specificity in identification of the epileptogenic zone. Higher sensitivity was seen in lesional TLE 

compared to lesional ETLE.115 As a result, guidelines for epilepsy surgery across Europe based upon the 

diagnostic accuracy of LTVEM were implemented.115 Due to lack of evidence for the utility of LTVEM in 

children, a modified Delphi process of pediatric epilepsy experts developed consensus-based guidelines 

for LTVEM in the pre-surgical evaluation of children in the United Kingdom (UK).23  

For patients with TLE there were two class 1 studies in adults and 1 class 1 study in children with 

indirect evidence of efficacy for surgical treatment compared to best medical therapy following LTVEM. 

There is high confidence in evidence that LTVEM should be used as part of the presurgical evaluation for 

TLE patients. For extra temporal epilepsies there is low confidence in evidence for LTVEM use to 

characterize seizure during presurgical evaluation.  

Recommendation: LTVEM must be used in the presurgical evaluation in drug resistant TLE patients 

(strong recommendation). There is neither evidence for nor against LTVEM to characterize patients 

with drug-resistant extra temporal epilepsy in the presurgical evaluation (weak recommendation).  

4. Yield of VEM 

The overall diagnostic yield of LTVEM varies widely among studies ranging from 19% to 75% 

depending upon the definition of utility, methodology, and cohort of patients evaluated11, 13, 17, 35, 37, 50 

but appears independent of the hospital setting.116 A systematic review found most of the literature on 

LTVEM focused on the noninvasive and invasive pre-surgical evaluation prior to epilepsy surgery.47 A 

large, prospective study demonstrated that LTVEM was useful to clarify the clinical diagnosis in 56.3% of 

patients,117 and subsequent meta-analysis found the pre-admission diagnosis changed in 35.6% of 

patients following LTVEM prompting change in management.47 Successful LTVEM sessions are 

significantly longer in the presurgical group than in the diagnostic groups.35 No difference in diagnostic 

yield has been identified with respect to age,19, 118-120 patients with neurological impairment,121 or reason 

VEM was performed.35 One retrospective study did not find a correlation between preadmission seizure 

frequency and yield for recording events during LTVEM.122 Furthermore, even patients who previously 

had ambulatory EEG,118 and those who had prior LTVEM, were found to have additive value in up to 77% 

of patients.35 In a prospective comparative study (category II) of 129 patients with 10 month follow-up, 

after LTVEM, the diagnostic categories were changed from pre-admission in 41.1% of the patients, and 

40.3% had revisions in management.123 

Pitfalls in VEM exist to compromise yield. Semiology alone may be vague or insufficient and 

post-ictal features over-interpreted and misdiagnosed as PNEA.11, 124, 125 There is a small risk that 

provocation by suggestion may lead to false positive results in patients with PNEA necessitating 

identification of the habitual event.126 Results from category IV studies involving EEG over-interpretation 

in patients with PNEA misclassified as epileptic seizures43, 127 have been noted following LTVEM. During 

VEM, approximately 20% to 30% of patients with epileptic seizures and PNEA never have a seizure 
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during hospitalization for VEM41, 128, 129 leading to “inconclusive” results. In patients with epilepsy, VEM 

may not reveal IEDs in EEG and be devoid of a detectable scalp ictal rhythm during focal aware 

seizures130, 131 falsely leading to misdiagnosis as PNEA.132 Further, patients with PNEA can generate 

rhythmic movement artifacts that falsely mimics an electrographic seizure133 or become obscured due to 

hyperkinetic epileptic seizures limiting identification of seizure onset in patients evaluated for epilepsy 

surgery.134 Scalp ictal EEG may falsely localize and lateralize focal seizures,135 especially those arising 

from mesial and posterior quadrant neocortices126, 136 potentially resolved when invasive EEG is 

performed.137, 138  One class II study provides low confidence in evidence that more than one-third of 

patients will experience a change in management after undergoing VEM.  

Observation: LTVEM may result in a change in management in some patients (weak 

recommendation).  

5. Technical standards  

Minimal technical standards are essential to ensure high-quality recording, adequate storage, 

optimal review, and web-based remote exchange of information among providers at full-service 

epilepsy centers and in the community.125, 139 Evolving digital technology and computer sophistication of 

instrumentation has transformed the practice of LTVEM140 leading to improved technical standards.141 

International equipment guidelines for optimal methods of LTVEM including signal processing and 

electronic transfer, and larger storage capacity have facilitated widespread use in developed 

countries.14, 142, 143 However, high-level evidence-based standards evaluating equipment and 

instrumentation is unavailable with heterogeneity for current clinical practices for LTVEM.144 We 

identified standard technical parameters for LTVEM using the modified Delphi method32 to reach an 

unprompted blind majority consensus of expert opinion (Table 3) by web-based survey questionnaire.  

5.1 Electrode array and EEG recording 

During LTVEM, EEG is telemetered over days through a cable or radio link in the hospital while 

behavior is documented by video. Computing power permits LTVEM to acquire and analyze a signal from 

the brain.145 LTVEM and variations in sensory number and design allow signal detection from deep 146 

and small regions of brain.147 Interictal EEG abnormalities alone are insufficient to provide a definitive 

diagnosis.19, 63 A recent IFCN guideline evaluating the evidence for diagnosis and monitoring with EEG in 

people with epilepsy has been published separately.11 Consensus was reached for LTVEM to use a 

greater number than the standard 21 electrodes used for standard EEG recording. Both the 10-20 and 

10-10 international system of electrode placement were endorsed. We support recommendations for 

use of standard IFCN array of 25 electrodes (children and adults) during scalp-based LTVEM augmenting 

the basal temporal regions.25 Dense EEG arrays during LTVEM and high sampling rates show even 

greater source localization.25, 148-150 This compares to a minimum of 16 channels for diagnostic LTVEM, 

and 32 for presurgical evaluation that has been recommended by the ACNS.14, 22 Routine use of basal 

temporal electrodes but not sphenoidal, nasopharyngeal, naso-ethmoidal electrodes is recommended. 

No consensus was reached regarding use of diagnostic electrode caps. Nor was consensus reached to 

recommend maximal allowable scalp electrode impedance though values less than 5 kΩ are routinely 

applied.25, 139 Consensus was reached for LTVEM to accommodate use of all forms of invasive electrodes. 
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Foramen ovale electrodes received negative consensus for use. Incorporating polygraphic recordings 

depend upon the focus of a specific clinical problem.151-154 Oximetry, extra-occulogram, respiratory and 

tremor monitors with scalp recording are multimodal options during LTVEM. All raters recommended 

EKG recording was necessary to record during LTVEM.  

LTVEM operating systems require hard drive memory capability to acquire at least 200 GB to 

allow for continuous monitoring up to one-week including software applications.155 Solid-state 

multichannel amplifiers should be optically isolated and follow minimum technical standards of 

recording standard EEG.11, 139 Consensus was reached for analogue to digital converters today using 16-

bit or higher, sample rates of more than 256 samples/second, and minimum filter settings between 0.5 

Hz and 70 Hz. Following acquisition and digitization EEG signals should connect to a central computer 

capable of storing at least 24 hours of continuous VEM data.22 Network connectivity is required for 

media viewing and information transfer to archive data by technologists or junior physicians. There was 

consensus support to maintain the entire video and EEG files until LTVEM reporting was finalized. A 

recent retrospective 15-year study (category III) involving 1025 cases noted a trend of a rising 

population of patients with normal VEM results increasing from 4.1 to 24.1%.156 Polygraphic recordings 

supplement LTVEM when abrupt motor signs occur.157-159 Noninvasive dense arrays approach may have 

similar localizing ability to invasive EEG (iEEG) in patients with focal seizures.160, 161 But there are 

technical challenges to recording dense array EEG during LTVEM, including limited data streaming and 

poor long-term tolerability of EEG head nets, so only low level evidence and expert consensus exists to 

support the use of dense array LTVEM in complex cases when patients are considered surgical 

candidates.160, 162, 163  

5.2 Video  

Video recording is routine in LTVEM164-166 in concert with EEG in expanding numbers of EMUs.117, 

167, 168 One camera is standard for LTVEM, however some centers use two cameras to provide 

complementary information from different viewing points. Prospective multi-rater studies (category II 

and III) have shown that compared with LTVEM, video alone may be useful when evaluating the clinical 

description of patients with observed seizures,125, 169 with similar sensitivity (category III) compared with 

EEG170 in various patient populations.171 Implementing video recording added to EEG increases the 

diagnostic yield over EEG alone172, 173 detailing semiological classification.66 However, no uniform 

nomenclature and consistent classification system differentiates patients with epilepsy from PNEA by 

video alone during LTVEM174, although semiologies42 allow hierarchical clustering.175, 176 Based on video 

data alone, a prospective LTVEM study involving 5 epilepsy experts found 7/23 (30%) cases by all raters 

correctly classified epileptic seizures and PNEA.177 A prospective study analyzing 120 seizures from 35 

consecutive subjects detailing semiology found of 45 signs demonstrated on video, only 3 signs for 

epileptic seizures and 3 for PNEA were significantly useful in categorizing seizures, and no single clinical 

feature was sensitive and specific for either event.178 Video recorded seizure phenomenology during 

VEM identifies patterns179 that may localize or lateralize signs with relative specificity for their 

involvement.180  

Standard digital audio-video data is acquired with MPEG level 1 or 2 compression however, the 

synchronization between video and EEG has not been standardized.14 Split screen synchronized video 
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and dual screen review are reported to be useful to evaluate paroxysmal neurological events.181 Digital 

video (and audio) are typically encoded into MPEG, MPEG2, or MPEG4 formats differing in the degree of 

resolution and compression algorithms used, and synchronized with EEG by use of a time marker. 24-

hour VEM requires up to 30 GB of memory and varies depending upon video resolution (usually 240 x 

320 pixels vs 480 x 640 pixels), degree of coloration, number of frames/second, and machine data 

compression algorithm employed. Therefore, relevant clips involving event of interest are selected for 

storage of VEM data to limit memory use.  

There were 4 class II studies (2 without EEG and 2 with EEG) that consistently showed benefit 

with the use of video. The confidence in the evidence of using video with EEG monitoring is moderate.  

Recommendation: video should be combined with EEG during the use of LTVEM (strong 

recommendation). 

5.3 Safety 

The potential for dangerous consequences exist during LTVEM because patients' seizures are 

induced.8 Convulsions and seizure emergencies, falls, injury, and postictal psychosis among others are 

possible safety risks.33, 167 Standardized protocols are recommended for use to ensure patient safety.144, 

182 Safety and quality data from 181,823 patients reporting on 34 different safety variables 

demonstrates a great deal of variation in reporting safety and quality measures in EMUs in a meta-

analysis.47 No validated protocols are universally available and utilized, and substantial variation in 

practice for essential aspects of LTVEM exist for performing optimal patient observation, tapering ASMs, 

and ASM rescue protocols.183-185 Therefore, great variation in quality and safety measures exists during 

LTVEM. A pooled proportion of adverse events occurred in 5-9% of patients in a meta-analysis.47 

Practice variability was present among 32 epilepsy centers in the UK reflecting differences in patient 

populations.167  

5.3.1 Clinical safety 

Overall, LTVEM is an acceptably safe procedure with appropriate precautions.186-188 Safety issues 

are most frequently encountered for patients undergoing pre-surgical LTVEM.189 Seizure provocation 

poses potential safety risks to patients represented by category III and IV studies.183, 190, 191 Even patients 

with PNEA are prone to adverse events, usually falls183 often while in the bathroom.192 A large category 

III study of 976 patients found only 1.9% of patients fell (without injury) despite being freely mobile, a 

similar finding reported in other centers practicing restricted mobility.193 One study (category III) 

compared falls in alert patients within the first 3 days of LTVEM (in the bathroom) and hospitalized 

patients with mental status changes who fell after 3 days (in their rooms).194 Novel lift systems, patient 

education, frequent nursing rounds, use of bed alarms, and assistance when out of bed may limit fall 

risk.192 A category IV study reviewing records from an Epilepsy Foundation database identified 2/733 

patients with aspiration following a GTC seizure, and shoulder dislocation in 8/806 during seizures 

accounting for an overall risk of <1%.195 Such serious medical consequences associated with seizures 

such as malignant cardiac arrhythmias, bony fractures, and pneumonia rarely occur.187, 191 Prospective 

comparative studies (category III) show patients with PNEA have increases in heart rate and systolic 
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blood pressure during the ictal phase, potentially predisposing to complications when attacks are severe 

and prolonged.196 Ictal asystole has been reported in 0.22–0.4% of patients undergoing LTVEM, and 

systematic review of 157 cases found females with early-onset epilepsy and preexisting heart 

conditions, and males with late-onset drug-resistant epilepsy and autonomic dysregulation were 

predisposed.197 Sudden unexpected death in epilepsy during LTVEM has been rarely reported as 

retrospective series (category IV) but involving multiple centers throughout the world.198, 199 

Current practice recommendations reached consensus agreement to obtain informed consent 

before VEM. Requiring 24 hour a day observation of patients by nursing and professional staff over the 

monitoring duration was considered a minimum standard, including alarm systems and direct 

observation with video monitors.167 A large, multicenter, category II study of epilepsy centers in the UK 

investigated staffing as a patient safety outcome recommending a nurse-to-patient ratio in an EMU 

should not exceed a ratio of 1:4.200 A category II prospective population-based observational study of 

patients implanted with invasive EEG electrodes found a risk of intracranial hemorrhage in a significant 

minority during LTVEM.201 Nurse-to-patient ratios in an EMU was identified to promote safety but these 

studies provide low confidence in the evidence.  

Recommendation: The safe, maximal patient to nurse ratio may be 1:4 (weak recommendation).   

5.3.2 Electrical safety 

Category IV clinical reports reflect essential safety features during LTVEM (Table 4).221-225 

Electrical safety rules and governance are unique to individual countries and established by the 

International Electrotechnical Commission. Electrical shocks usually result from chassis leakage current 

from LTVEM equipment electrically powered from the 120-volt (United States; 110 volts in Europe) 

power transformers. Electrical injury is possible when current passes through a patient from an 

electrical source or electrode contacts.202, 203 Any mains-powered electrical device may “leak” current 

and enter the patient through direct contact of a nearby metal object or indirectly by capacitive coupling 

inside an electrical device from nearby wiring. Safe current limits are set for both normal conditions and 

for single fault conditions (i.e., a disconnected earth ground). LTVEM safety guidelines exist for 

individual components of LTVEM equipment and are regularly checked for safe use according to hospital 

standards and biomedical engineering services.204 Proper grounding of the patient and the EEG 

recording equipment is critical for avoiding electrical shock risk.  

Microshock injury could occur  to patients undergoing LTVEM with scalp electrodes if there is a 

low-resistance pathway into the body such as a pacemaker or saline-filled catheter which can provide a 

low resistance pathway to the heart.204  Currents of 5-10A can induce ventricular fibrillation202 as a 

function of body habitus, current intensity, duration, and pathway.203, 205, 206. Ground loops are critical to 

avoid during LTVEM. Hazardous currents can be generated from ambient magnetic flux from powerline 

wiring in walls or ceiling in EEG leads that are too lengthy or widely separated. 

There is no evidence for or against methods to ensure electrical safety in patients undergoing 

VEM. But principles that apply to electrical safety of all hospital devices apply to EEG equipment as well. 

Grounding safety rules should be followed to prevent patient injury.  
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5.4 Practice and Personnel   

Despite the use of VEM as a gold standard for seizure diagnoses, limited appreciation of this 

technique is held by some general neurologists, psychiatrists, hospital administrators, and insurance 

carriers managing people with paroxysmal neurological disorders.16 The current practice of VEM has 

been outlined in a European multi-center web-based survey study.33  

5.4.1 Seizure Monitoring 

Considerable variation in the practice and organization of EMUs was found in a web-based 

survey study involving 25 centers across 22 European countries, with subsequent recommendations to 

follow evidence-based LTVEM practices.33 Delayed response to seizure alarms may occur due to high 

false-positive rates of detection.207 A retrospective multicenter study found average response time from 

caregivers was twice as fast as the response by EMU-based personnel.208  Staff uncovering patients 

during seizures to assist with evaluation of semiology found 40% of patients were fully or partially 

obscured for more than 30 seconds during the event compromising visualization.208 Implementing 

standardized protocol for managing and testing patients during seizures in the EMU can potentially 

increase the quality of the data recorded during LTVEM. A task force appointed by the ILAE Commission 

on European Affairs and the European Epilepsy Monitoring Unit Association prospectively studied 

(category II) testing paradigms during seizures in 152 consecutive patients (250 seizures) at 10 epilepsy 

centers with an interictal, ictal, and post-ictal testing paradigm successfully implemented in 93% of 

patients with seizures, limited only by seizures of short duration.209 A European survey showed 91% of 

EMUs performed ictal or postictal testing, however, there was no standardization of the procedure, and 

many EMUs lacked institutional guidelines for testing patients during seizure monitoring.144 

Retrospective comparative assessment of seizures in 33 adult or pediatric patients captured during 

LTVEM found behavioral testing during seizures was able to be performed in only 50% of patients 

whereas automated video-recorded behavioral tasks activated by computer-based seizure detection 

provided reliable behavioral assessment.210 One category II study was unable to demonstrate superiority 

of a particular testing paradigm during VEM. Therefore, the confidence in evidence is low.  

Recommendation: A written, standardized protocol may be used in each LTVEM unit for managing 

and testing patients during seizures (conditional recommendation).   

5.4.2 Services  

Guidelines for facilities, personnel and essential LTVEM services are established by experts in 

referral hospitals to comply with national and international standards.211 Partnerships between epilepsy 

specialists in full-service epilepsy centers performing LTVEM and referring clinicians should exist to form 

care networks to continue best practices and follow-up patient management.16, 212 

5.4.3 Staffing 

Patients who undergo diagnostic LTVEM are subject to variable staffing models.116, 212, 213 

Consensus was obtained for some elements involving staffing VEM units by skilled personnel (Table 5). 
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Specialized services such as functional brain mapping by electrical stimulation of invasive electrodes, 

electrocorticography, evoked potential recording, and investigative drug and device trials complement 

clinical care and require a high degree of expertise when considering resection or ablation of 

epileptogenic tissue.212 Individual qualifications and responsibilities have been outlined for a LTVEM 

laboratory.22 Implementing periictal nursing intervention was shown to shorten the duration of postictal 

generalized EEG suppression but oxygen administration did not in a retrospective (category III) study.214 

A national survey report in the UK recommended dedicating healthcare professionals in LTVEM units in 

charge of patient supervision should target one nurse for 4 patients or less as optimal167 similar to an 

optimal ratio of technologists to patients monitored. Patient companions during LTVEM help document 

events, test awareness, ensure visualization of the patient on video, and alert staff at seizure onset. 

Immediate family members are often more helpful than non-family members.215 

Qualified EEG technologists and monitoring technicians are key members of the team during 

LTVEM to recognize events and interact with nursing staff and provide feedback during seizure 

monitoring. A survey study in the United States found 68.8% of participants provided continuous patient 

observation during LTVEM.191 A European survey study reported 80% of participants provided 

continuous observation with 10% only during daytime hours of operation and 10% performing 

observation intermittently in conjunction with automated seizure and spike detection algorithms.144  

5.4.4 Duration of Recording 

Wide variability exists among epilepsy centers regarding the duration of VEM.216 The duration of 

EMU admission for VEM depends upon the reason for admission.217 One comparative trial (category III) 

in 226 patients found most patients undiagnosed following outpatient EEG received a definitive 

diagnosis in less than 1 day of VEM.218 Other prospective studies (category III) required a second day of 

VEM219 and others were nearly equal between 1-2 days.76 In contrast, a retrospective (category IV) study 

of 439 LTVEM cases found 72 hours was able to record at least one seizure in 90% of patients with 

epilepsy (vs 48 hours for those with PNEA).122 One retrospective study (category IV) 5 days of LTVEM 

reported a 98% recovery rate for the targeted clinical event.76   

Studies (category III and IV) in patients with PNEA confirmed by short-term VEM suggest LTVEM 

could be obviated when events are captured.129, 220 Facilities may be unavailable or inaccessible in 

remote regions and developing countries.221 A recent prospective observational study in India (category 

III) correctly diagnosed about 80% of PNEA cases with short-term LTVEM.222 However, shorter initial 

duration of LTVEM show higher risk for patient readmission in a large retrospective single center cohort 

comprised of 865 patients and 30-day encounters with a readmission rate of 7.0%.223  Overall, the 

optimal duration for LTVEM appears to be more than 3 days for patients with drug-resistant epilepsy 

and those with PNEA are typically diagnosed in less than 2 days.224 Retrospective studies show IEDs in 

the EEG appeared soon after sleep in more than 90% of patients with focal and generalized epilepsies.225 

In a retrospective (category III) study of 596 admissions, nearly 40% of epilepsy patients had longer 

LTVEM durations compared to those with PNEA with the need to record additional seizures as the 

primary reason for extended stays.217 For surgery, at least 3 seizures are generally representative in 

uncomplicated cases though higher number of seizures may be required when more than one 

epileptogenic zone is suspect. In bitemporal epilepsy patients implanted with a responsive 
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neurostimulator, the average time to record the first electrographic seizure from a contralateral focus 

was 41.6 days226 in a retrospective review (category III) evaluating the electrocorticogram. A large 

retrospective (category III) study of 1000 children (mean 7 years) monitored over 1.5 days (r= 1-10) 

found longer sessions were associated with significantly higher rates of ILAE classification of epilepsies 

and lower rates of inconclusive session. Hence in adolescents LTVEM was recommended for 3 days or 

more when events are less than daily.227 Because the duration of LTVEM depends on the indication and 

on seizure frequency, the duration of LTVEM is variable and based upon the endpoint of recording.  

Recommendation: The duration of LTVEM will vary relative to the indication for performance and 

number of seizures and events captured (conditional recommendation).  

 

5.4.5 Activation 

Activation protocols provide relative degrees of usefulness in patients with epilepsy.228 Two 

prospective multicenter studies (category II) support safety and efficacy of activation procedures during 

EEG.229, 230 In addition to hyperventilation and photic stimulation, sleep deprivation is recommended in 

guidelines to elicit abnormalities.139, 143, 231 In addition, exercise, stress, and dietary influences may 

precipitate seizures in some patients with epilepsy.232, 233 A random sample of 1000 standard EEGs in the 

UK validated the additive effect of activation to standard EEG in 11% of cases.234 In patients with 

epilepsy, standard EEG from category II and III studies demonstrate sleep as a potent form of activation 

to trigger seizures and IEDs.169, 235 Sleep-deprivation during LTVEM has diagnostic value in activating 

IEDs,236, 237 and an acceptable practice in the United States and Europe139, 238 to increase the yield239, 240 

despite a lack of systematic analyses. The ACNS, ILAE, and NICE all recommend that HV is performed as 

part of a standard EEG.242 Hyperventilation with breath counting and intermittent photic stimulation are 

useful in patients with GGE to clarify epilepsy syndromes.62 A prospective study (category I) of 52 

seizures recorded over 247 days of LTVEM demonstrated the rate of activated seizures was nine times 

higher than the rate of control seizures and demonstrated value of instituting repeated hyperventilation 

as an activation technique combined with ASM withdrawal.241 One category II study found usefulness of 

hyperventilation to activate 25% of patients with temporal lobe seizures during LTVEM.242 Unique 

methods of activation during LTVEM may provoke seizures in some patients with reflex epilepsies using 

individualized stimuli including reading, writing, eating, performing arithmetic, and somatosensory 

stimulation.235, 243  

In the diagnosis of PNEA, there is marked methodological heterogeneity in activating techniques 

and low level of evidence in a systematic review including 11 prospective studies.244 Activation 

techniques expedited the goal of achieving event recording to diagnose patients with PNEA in a 

randomized controlled trial using simple suggestion techniques during LTVEM41 , either alone229, 230 or in 

combination with photic stimulation129 to provide evidence of suggestibility.245 Temple compression and 

tuning fork application were found in a retrospective (category IV) study to be most effective.246 

However, controversy exists regarding ethical use of activation in PNEA.39, 247-249 Sensitivity range from of 

77- 84%250-253 and specificity approaches 100%250 for diagnosis. In older comparative trials (category III 

and IV), using placebo (e.g., saline injection, application of color patches, alcohol patches or tuning fork 
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etc.) elicited PNEA in most patients.251 Atypical events or epileptic seizures can occur in a minority 

resulting in an incorrect diagnosis.250 Provocation without placebo such as combined hyperventilation 

and photic stimulation may be favorable due to its comparable sensitivity to other placebos without 

perceived deception given it’s routine use in standard EEG,252 non-inferiority,254 with the potential to 

shorten LTVEM and reduced costs by expediting the diagnosis for patients with infrequent events.255  

There is moderate confidence in evidence that hyperventilation was successful in conjunction 

with ASM withdrawal as an activating procedure to provoke seizures in patients with GGE and low 

evidence in PNEA with expert-opinion suggesting patient-specific provocation methods may be 

performed in patients with reflex epilepsies. 

Recommendation: patients with GGE should undergo hyperventilation in conjunction with ASM 

withdrawal as an effective activating procedure (strong recommendation).   

5.4.6 Drug reduction    

 ASM is routinely reduced during LTVEM to increase the likelihood of event capture. A judicious 

speed of ASM reduction should be balanced against ineffective or prolonged hospitalization for 

LTVEM.122 Current practices of ASM reduction are highly variable across epilepsy centers performing 

LTVEM. Rapid withdrawal may potentially obscure localizing information at seizure onset in the EEG 

during LTVEM in patients with drug-resistant epilepsy.33, 256  Introducing a scheduled taper of ASM 

according to a pre-prescribed protocol facilitates a standardized approach to safe seizure provocation.182 

However, no standardized protocols for reduction of ASM during LTVEM exist257 and current practices 

are highly variable across centers.184 Overly aggressive ASM taper may result in capturing non-habitual 

seizure semiology, obscure localizing information on ictal EEG, or produce seizure clustering and status 

epilepticus. Formal protocols focused on ASM taper were shown to have fewer seizure clusters during 

LTVEM.258 Various study methodologies and small sample sizes have limited reliable conclusions to 

recommend the optimal rate of ASM taper during VEM.259 In a comparative study (level II) ictal EEG 

localization did not change during ASM withdrawal during reduction of lamotrigine and carbamazepine 

during LTVEM performed during pre‐surgical evaluation.260 Two prospective studies have provided high 

level evidence for the withdrawal of ASM during LTVEM.261, 262 One randomized controlled (category I) 

trial using open-label but blinded outcome assessed ASM reduction in 2 arms of 70 patients each, 

comparing fast taper by 30–50% (fast) and slow taper by 15-30%, in patients without a prior history of 

status epilepticus or frequent daily seizures and concluded fast taper of ASMs was safe and effective 

aside from an increase in 4-hour seizure clusters.261 A second prospective study of 158 patients with no 

control arm (Category II) found rapid taper of ASM combined with sleep deprivation during LTVEM was 

safe and effective in adults relative to time of first seizure resulting in reduced time spent in the EMU.262 

This compares favorably with other retrospective, single-center, observational studies.263 In contrast, 

rapid ASM tapering within one day was associated with longer EMU admissions and greater seizure 

frequency during LTVEM.122 Rapid ASM taper in a category III study did not produce a significant adverse 

effect on the ECG or heart rate variability.264 Tapering carbamazepine was found to influence ictal 

semiology intensifying seizure frequency and severity compared to valproate in a category III study.265 In 

category IV studies involving barbiturates and benzodiazepines, taper triggered seizures in some people 

without epilepsy.266 Patients completely discontinued from ASM appear more likely to experience focal 
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to bilateral tonic-clonic seizures than those in whom ASM were partly discontinued.267 Slowly tapering 

ASM at home prior to inpatient LTVEM starting a week or more prior to admission has been reported to 

be safe in a retrospective observational cohort of 273 patients (category III) without complications.268  

In patients without a prior history of status epilepticus or frequent daily seizures, ASM taper by 30–50% 

(fast) and slow taper by 15-30% was safe.  

Recommendation: in patients without a history of status epilepticus or frequent daily seizures a taper 

of 30-50% daily should be considered (strong recommendation). 

5.4.7 Automated Analyses 

Automated analyses used to identify IEDs and electrographic seizures attempt to condense and 

reduce the large volume of data requiring physician review269 to facilitate time-efficient interpretation. 

Relying solely on automation alone is not recommended without EEG review by a qualified human 

interpreter to limit overestimating abnormality. Commercially available automated software is used to 

detect and validate epileptiform activity, classify, and quantify EEG abnormalities.270 However, while 

even better performance is likely to be encountered, human validation will be required. Software 

systems available for seizure detection have been tested in a prospective multi-center study271 and 

retrospectively.271-273 Algorithms for automated seizure detection during scalp LTVEM have a greater 

sensitivity than IED detection and may exceed 75.0% detection with low false positive rate274 to 

supplement patient and witness identified seizures. In a study of 159 patients with temporal lobe 

epilepsy, 794 focal seizures were analyzed with a sensitivity of 87.3% and 0.22 false detections per 

hour.275 However, this has not been confirmed in extratemporal seizures or generalized seizures of a 

short duration (e.g. epileptic spasms). In a recent study of the performance of the Persyst 14 seizure 

detection algorithm in prolonged EEGs from 120 patients, the performance of the system was 

comparable to three human experts and had a sensitivity of 78% and a false positive rate of 1 per day.273 

Most commercially available systems will only identify a seizure if the ictal EEG changes have a minimum 

duration of at least 12 seconds. Automated analyses for seizure detection is estimated to save 1.3 

hospital days per patient admission, based on the percentage of seizure detections captured solely by 

the computer.276   

Recommendation: Automated algorithms for spike and seizure detection may provide complementary 

aid to expert assessment (weak recommendation). 

5.4.8 Rescue Medication 

The best seizure response occurs with preparation and when a protocol is in place for seizure 

urgencies and emergencies.16 Prolonged seizures, acute repetitive seizures, and rarely status epilepticus 

may result during VEM.277 Implementing safety strategies result in a clinically relevant reduction of 

adverse events.278  Fortunately, serious consequences and adverse events are rare when slow reduction 

of ASM is used with a benzodiazepine rescue protocol.259 In children and adults, class 1 evidence 

demonstrates both intravenous lorazepam and intravenous diazepam are efficacious as initial therapy in 

convulsive status epilepticus, though other ASM and routes of administration have proven similar 

efficacy.279, 280 A retrospective VEM study (category III) found duration differed with focal and 
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generalized seizures guiding the use of rescue medication.281 No universal approach or standardized 

protocol exists for use of rescue medications during LTVEM in the EMU.282 A useful protocol as part of 

the admission order set should contain personalized orders, treatment parameters, and when the 

physician is to be notified for prolonged or frequent seizures. The National Association of Epilepsy 

Centers recommends standing orders for both IV and non-IV emergency ASM to be used for seizures 

lasting more than 5 minutes.283 When to administer rescue ASM is center-specific and relative to seizure 

type and duration. A GTC seizure lasting 3 minutes or focal impaired awareness seizure lasting 5-10 

minutes should prompt consideration of rescue ASM. More than one GTC seizure per 24 hours or more 

than 2 focal impaired awareness seizures in 12 hours also merits consideration. 

5.5 Reporting 

The VEM report has traditionally been a qualitative descriptions of waveform interpretation for 

VEM sessions using free text formats. The VEM report should include introductory demographic 

information regarding the patient and conditions of recording, a description of essential waveform 

characteristics, an assessment of normal or abnormal, and a clinical correlation in response to the 

clinical question posed prior to VEM.143, 196, 209 VEM interpretative reports, like standard EEG, are 

becoming increasingly automated.209 Providing graphic display of EEG samples28 enhance reproducibility 

of interictal and ictal EEG portions of the VEM report to facilitate patient management and clinical 

research.284 Updated terminology59, 174 and newer classification systems104 provide current framework of 

the report. Despite established American guidelines28 and European consensus,285 significant variation in 

observing guidelines for standard EEG reporting exist.286 Moderate interobserver reliability plagues EEG 

interpretation which may be in part due to inconsistencies and lack of standardization for reporting style 

and terminology utilized.24, 285, 287 In 2017, the second International version of SCORE (Standardized 

computer-based organized reporting of EEG) initially published as a European consensus established a 

template for reporting and endorsed by the IFCN as a guideline based upon adaptation from IFCN, ILAE, 

and ACNS classification and glossary of terms to enhance the initial European version.285 The 

consequences of incomplete, inadequate, or false VEM reporting lies in the potential for initiating or 

continuing inappropriate treatment. Instituting electronic databases with a list of pre-established terms 

may result in higher inter-rater agreement of EEG features.285, 288, 289 Minimum standards are 

recommended when forming a LTVEM report. The final diagnosis should include the type of epileptic, 

nonepileptic, or unclassified event recorded. Seizure types should be specified according to ILAE 

terminology. For diagnostic reporting, both semiology and EEG recorded during seizure should follow a 

chronological order using standardized terminology (IFCN Glossary for EEG; ILAE Glossary for semiology).  

Patient information, conditions of recording, description of the recording and significant features, an 

impression (normal or abnormal), diagnostic significant and clinical correlation should be included. 

Detailing the electroclinical description of significant features during presurgical evaluation should 

specify lateralizing and localizing features for identification of the symptomatogenic zone at a minimum. 

6. Conclusions 

Significant gaps in evidence exist due to substantial heterogeneity, narrow spectrum 

conclusions, and limited high-level evidence across published national and international studies on 
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selected features of LTVEM. This clinical practice guideline provides a comprehensive synthesis of the 

standards for LTVEM in people with epilepsy and provides recommendations using GRADE to implement 

standardize approaches to selected aspects of its use (Table 6). This does not preclude the numerous 

reports, national and international guidelines, and position statements from providing guidance to 

perform LTVEM. Experience gained from selective aspects of VEM provides important insight into 

conducting comprehensive high-level studies in areas with limited information and points the way for 

further clinical research development. 
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Figure Legends 

Figure: PRISMA diagram of the systematic literature search and breakdown of peer-reviewed journals 

selected for evaluation. 
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Table Legends 

Table 1: Category 1 and 2 manuscripts addressing selected components of the minimal standards for 

LTVEM. 

 

Table 2: PICO questions ascertaining population, intervention, comparator cohorts, and outcome 

questions addressing indications, technical requirements, and performance in practice of LTVEM. 

 

 



23 
 

Table 3: Summary of Technical Parameters Reached in Majority Using Modified Delphi Method. 

 

Table 4: Electrical safety guidelines for VEM equipment. Adapted from Burgess RC. Electrical Safety. 

Chapter 5. In: Handbook of Clinical Neurology, K.H. Levin and P. Chauvel, Editors. Vol. 160 (3rd series) 

Clinical Neurophysiology: Basis and Technical Aspects. 2019:67-81.). 
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Table 5: Summary of Personnel Responsibilities Reached in Majority Using Modified Delphi Method. 

 

Table 6: Summary of GRADE recommendations for selected features of LTVEM based upon high-level 

evidence. 
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